
Journal of Applied Mechanics and Technical Physics, Vol. 45, No. 3, pp. 440–448, 2004

MULTIGRID MODELS OF COMPOSITE MATERIALS

OF IRREGULAR STRUCTURE WITH A SMALL FILLING RATIO

UDC 539.3A. D. Matveev

This paper considers composites consisting of a set of typical composite multigrid finite elements
whose structures are regular and different. Mean local errors are proposed for multigrid modeling of
composites.
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Introduction. Composites have been usually studied using micro- and macromodels [1]. In macromodels, a
composites is considered a homogeneous body with certain (fictitious) elastic moduli. Furthermore, the deformation
of composites is described invoking various hypotheses, depending on composite structure. These hypotheses impose
certain constraints on displacements, strains, and stresses, which introduces an inherent error into the solutions.
Constructing solutions for a composite macromodel reduces to finding fictitious elastic moduli of the composite,
which is a difficult problem. Serious difficulties arise when macromodels are used to analyze composites of irregular
structure with a small filling ratio. Micromodels provide an adequate description of the behavior of composites.
However, finite-element (basic) composite models constructed using the microapproach have large dimensions [1].
The use of superelements to decrease the dimension of these models is not effective [2].

In the present paper, composites of irregular structure with a small filling ratio are analyzed by multigrid
modeling, which reduces to constructing a multigrid discrete model on the basic composite model. This model
consists of composite multigrid finite elements (CMFEs) [3, 4]. To design an m-grid composite finite element (FE),
one uses m nested grids. The finest grid is generated by basic partition taking into account the CMFE structure,
and the remaining m− 1 grids are determined on its boundary. Construction of CMFEs reduces to eliminating all
nodal unknowns in the basic partition inside the region and most of the unknowns on the boundary.

An advantage of multigrid modeling is that multigrid models take into account composite structure and the
model dimension is much smaller than that of basic composite models and, hence, finite-element implementation
for multigrid models requires much less computer time and memory than that for basic models.

We consider composites consisting of typical square two-grid finite elements of the same size which have
identical fine and coarse grids. The composite structures of typical CMFEs are assumed to be regular and different.
Calculations show that the error of grid solutions is a function of coordinates. It is therefore reasonable to analyze
the solutions by using the mean local errors in grid displacements and stresses in relatively small subregions of the
composite. We describe procedures that allow one to construct two-grid models of composites so that the mean
local errors in grid displacements or equivalent stresses in indicated subregions are smaller than a certain specified
value. An example of calculations is given and calculation results are analyzed.

1. Composite Multigrid Finite Elements. We consider the main principles of designing CMFEs using
as an example a composite five-grid rectangular finite element (RFE) ABCD with dimensions a×b (Fig. 1) subjected
to plane stresses. In Fig. 1, the RFE comprises rigid flat fibers of width h (dashed) and a 3h×2h particle (dashed).
We assume that the constraints between the components of the composite RFE are ideal and the displacements,
stresses, and strains of these components obey Hooke’s law and Cauchy’s relations [5]. The basic partition of
the RFE, which consists of first-order square finite elements Sh with side h, takes into account its structure and
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Fig. 1. Composite five-grid RFE.

generates a fine grid Sh with size h, whose nodal unknowns are the displacements u and v. On the grid Sh, we
construct a rectangular superelement [2], whose potential energy Πe

s is given by

Πe
s(v

e
s) = (1/2)(ve

s)
tKe

sve
s − (ve

s)
tP e

s , (1)

where Ke
s , P e

s , and ve
s are the stiffness matrix, the nodal-force vector, and the vector of the nodal unknowns of the

superelement, respectively.
On each side of the RFE, we construct a one-dimensional (coarse) grid Li (nested into the fine grid Sh) with

size hi (i = 1, 2, 3, 4). On the coarse grid Li of the superelement, we construct additional functions ui and vi that
approximate the displacements (see [6]):

ui = Niq
u
i , vi = Niq

v
i . (2)

Here Ni is the vector of shape functions of the grid Li, and qu
i and qv

i are the vectors of the nodal values of the
functions ui and vi on the grid Li (i = 1, 2, 3, 4), respectively.

Let ve
h denote the vector of the nodal unknowns of a composite five-grid RFE that includes the FEM

parameters of those nodes of the superelement which are the nodes of the coarse grids Li. In Fig. 1, these nodes
are shown by filled circles (10 nodes). We introduce the vector

qe
0 = {qu

1 qu
2 qu

3 qu
4 qv

1 qv
2 qv

3 qv
4}t (3)

and write the following matrix relation between the vectors ve
h and qe

0:

qe
0 = Be

sve
h, (4)

where Be
s is a rectangular Boolean matrix.

We assume that the values of the functions ui and vi at the boundary nodes of the fine grid are equal to the
corresponding components of the vector ve

s . Using these equalities and (2) and (3), the vector ve
s is expressed in

terms of qe
0:

ve
s = Ae

sq
e
0, (5)

where Ae
s is a rectangular matrix.

Substituting (5) into (1) and using (4) and the condition ∂Πe
s/∂ve

h = 0, we obtain

Ke
t ve

h = F e
t , (6)

where Ke
t = (Be

s)t(Ae
s)

tKe
sAe

sB
e
s is the stiffness matrix and F e

t = (Be
s)t(Ae

s)
tP e

s is the nodal-force vector of the
composite five-grid RFE.

Thus, the RFE is a five-grid finite element since it contains five nodal grids — one grid Sh and four grids Li.
For a = b and h1 = h2 = h3 = h4 = H, we obtain a square two-grid FE. CMFEs shaped like a triangle and a
rectangular parallelepiped can be constructed in a similar manner. Figure 2 shows a four-grid FE shaped like a
right-angle prism, which has a three-dimensional fine grid with step size h along the axes Ox, Oy, and Oz and three
two-dimensional coarse grids lying on the adjacent faces of this FE. The nodes of the coarse grids are shown by
filled circles. A discrete composite model that consists of m-grid finite elements is called an m-grid model.
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Remark 1. We introduce the vector W0 of nodal displacements in the basic model (basic partition) of the
composite. Let ‖W 0 −W0‖ 6 δ1, where W 0 is an exact solution and let ‖W0 −W h‖ 6 δ, where W h is the nodal
displacement vector of the composite model. In this case, we obtain ‖W 0 −W h‖ 6 δ0, where δ0 = δ1 + δ. The
error δ1 is defined by the basic partition of the composite. The factors affecting this error have been studied in FEM
theory [7]. Let δ1 = 0 for the basic partition. In this case, testing of the multigrid model reduces to determining
the error δ. Calculations show that the most significant change in δ is observed for simultaneous variation in the
structures (step sizes) of the fine and coarse grids.

2. Using Mean Local Errors in Multigrid Modeling of Composites. Calculations show that the
error δ (see Remark 1) is a function of coordinates and its values can vary over a wide range. We note that, in
calculations, it is most important to know the error in the maximum displacements and stresses. In this connection,
in the analysis of grid solution, it is proposed to use the mean local errors determined for displacements (stresses)
in small subregions lying at the center of the CFME. We consider the mean local errors in multigrid modeling of
composites using some propositions, whose essence is illustrated for two-grid models of two-dimensional composites.

2.1. Basic Propositions of Two-Grid Models for Two-Dimensional Composites. Proposition 1.

A two-dimensional composite located in a Cartesian coordinate system xOy is subjected to plane stresses and
represented by square regions Se with side a, where e = 1, . . . , N (N is the total number of regions Se). The basic
partition (basic model) of the composite, consisting of first-order square FEs Sh

j with side h, takes into account
the structure of the composite. The components of the composite are isotropic homogeneous bodies. The two-grid
model of the composite consists of two-grid square FEs Sp

e with side a (e = 1, . . . , N , where N is the total number of
FEs Sp

e ), whose composite structures are regular and different. The basic partition of the region Se of the two-grid
FE Sp

e consists of square FEs Sh
j and generates a fine square grid Sh with step size h (as in the region Se of the

basic composite model). On the sides of the FE Sp
e there are four identical coarse grids: L1, L2, L3, and L4 with

the step size H = kh, where k is an integer. The two-grid FE Sp
e have identical fine and one-dimensional coarse

grids (Sh and Li, respectively). Let we
h and we

0 denote the nodal displacement vectors of the fine grid Sh of the
region Se that correspond to the two-grid and basic models, respectively.

Proposition 2. For the regions Se of the basic and two-grid models of the composite, we use the same law of
partition into FE Sh

j . For the region Se, we construct a sequence of partitions {Rn}n=∞
n=1 (basic partitions) that take

into account the composite structure of the region Se for any n. For the partition Rn, the step size h of the fine
grid Sh is given by h = h0/n, where h0 = a/l (l is an integer); in this case, we have k1 = l/k, where k1 is an integer.
The notation h → 0 means that h = h0/n → 0 as n →∞, where a, h0, k = const; i.e., the quantities a, l, and k are
specified. It is worth noting that, given the partition law for the region Se, the square FEs Sh

j of the partitions Rn

are isotropic and homogeneous. It is well known [8] that the stiffness-matrix coefficients of the first-order isotropic
homogeneous square FEs Sh

j with side h are independent of h and limited. Hence, as h → 0, the coefficients of the
finite-element equations constructed for the partitions Rn do not increase; i.e., they are limited.

Proposition 3. We write the vectors we
h and we

0 in the form

we
0 = {ue

0 ve
0}t, we

h = {ue
h ve

h}t, (7)

where ve
0(v

e
h) is a vector that contain the displacement values of all nodes of the coarse grids Li of the region Se
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and ue
0(u

e
h) is a vector that contains the displacement values of the nodes of the fine grid Sh of the region Se that

do not coincide with the nodes of the coarse grids.
We assume that ‖we

0 −we
h‖ → 0 (e = 1, . . . , N) as h → 0 for two-grid square FEs of any regular composite

structure; i.e., let

h → 0: ‖ue
0 − ue

h‖ → 0, ‖ve
0 − ve

h‖ → 0, ‖u‖ = max |ui|, (8)

where ui are the components of the vector u.
Let the basic partition of the composite be such that the finite-element solution can be considered exact,

i.e., we assume that the displacement vectors we
0 (vectors ue

0 and ve
0) are an exact solution.

Proposition 4. The mean local errors are determined for the grid displacements and stresses in a small region
Sqe

r at the center of a square two-grid FE Sp
e (Sqe

r ⊂ Se) and contains q nodes of the fine grid such that 2q is the
dimension of the vector ve

0. We assume that for any h in the region Sqe
r , the displacements, stresses, and equivalent

stresses are limited and nonzero. With allowance for (7), the finite-element system of equations for the partition
Sh of the region Se of the basic composite model can be written in matrix form[

Ae
0 Be

0

Ce
0 De

0

]{
ue

0

ve
0

}
=

{
Re

0

P e
0

}
, Ke

0 =
[

Ae
0 Be

0

Ce
0 De

0

]
, F e

0 =
{

Re
0

P e
0

}
, (9)

where Ae
0 and De

0 are square matrices, Be
0 and Ce

0 are rectangular matrices, Re
0 is the vector of nodal forces acting

at the nodes of the fine grid Sh that do not coincide with the coarse-grid nodes, P e
0 is the vector of nodal forces

acting at the nodes of the coarse grids in the region Se, Ke
0 is the stiffness matrix, and F e

0 is the vector of nodal
forces of the partition Sh. The displacement vectors ue

0 and ve
0 take into account the boundary conditions of the

region Se, and the dimension of the vector ue
0 is greater than that of the vector ve

0.
From system (9), we obtain ue

0 = Ee
0ve

0, where Ee
0 = (Ae

0)
−1Re

0 − (Ae
0)
−1Be

0 and (Ae
0)
−1 is the inverse

matrix. We us uqe
0 to denote the nodal-displacement vector of the region Sqe

r that corresponds to equilibrium of
the basic model. Let the number of nodes q in the region Sqe

r be such that the dimensions of the vectors uqe
0

and ve
0 are equal to 2q. Using the matrix Ee

0 and taking into account that uqe
0 ⊂ ue

0, we construct the equality
uqe

0 = (Aqe
0 Re

0−Qqe
0 )ve

0, where Aqe
0 and Qqe

0 are rectangular and square matrices, respectively. Let Re
0 = {Re

p Re
g}t,

where Re
g is the vector of nodal forces acting on the boundary of the region Se (we note that since the vector we

0

is unknown, the forces Re
g are also unknown) and Re

p is the vector of nodal forces acting inside the region Se, i.e.,
the vector of specified nodal forces. It is well known that the farther the point of application of a point force from
the region Sqe

r , the smaller its effect on the displacement field in this region. We assume that the forces Re
g have

little effect on the displacements in the region Sqe
r , i.e., the displacements are determined under the assumption

that Re
g = 0. We note that Re

g is the part of the nodal forces of the region Se that are distributed uniformly along
the region boundary. We find the displacements uqe

p = (Aqe
0 {Re

p 0}t − Qqe
0 )ve

0. Let εe
0 = ‖uqe

0 − uqe
p ‖ be a small

quantity such that we can set εe
0 = 0, i.e., uqe

0 = uqe
p . In this case, the nodal displacements uqe

0 of the region Sqe
r

are calculated by the formula

uqe
0 = Gqe

0 ve
0, (10)

where Gqe
0 = Aqe

0 {Re
p 0}t −Qqe

0 is a square matrix; the nodal-force vector Re
p is specified.

The relations between the parameters a, h, and k of the two-grid FEs Sp
e , for which the representation (10)

is used with a specified error εe
0, are determined from results of numerical experiments. Propositions similar to

Propositions 1–4 are also formulated for two-grid (four-grid) models of three-dimensional composites consisting of
two-grid (four-grid) FEs shaped like a cube (rectangular parallelepiped) whose composite structures are regular and
different.

2.2. Procedure for Constructing Two-Grid Composite Models with a Specified Local Error
in Displacements. We consider the main principles of this procedure using as an example a two-grid model for
a two-dimensional composite. The model consists of two-grid FEs Sp

e and satisfies Propositions 1–4. Let a grid
solution be constructed for this model; i.e., let the vectors ve

h (e = 1, . . . , N) be determined. We note that ve
h is the

nodal-displacement vector of the two-grid FE Sp
e .

We write the vector ue
h [see formula (7)] in the form ue

h = {ue
s ve

g}t, where ue
s is a vector that contains

the displacement values of the internal nodes of the fine grid Sh in the region Se and ve
g is a vector that contains

the displacement values of the boundary nodes of the grid Sh that do not coincide with the coarse-grid nodes. In
this case, the vector ve

s of boundary nodal displacements of the grid Sh (i.e., the nodal-displacement vector for
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the superelement constructed for the partition Sh of the region Se) has the form ve
s = {ve

g ve
h}t. Using the matrix

relations for the superelement, we express the vector ue
s in terms of ve

s (see [2]):

ue
s = Me

s ve
s . (11)

Here Me
s is a rectangular matrix.
Let a = b and h1 = h2 = h3 = h4 = H. Substitution of (4) and (5) into (11) yields ue

s = Ee
sve

h, where
Ee

s = Me
s Ae

sB
e
s . We introduce the vector uqe

h of the nodal displacements of the region Sqe
r that corresponds to

equilibrium of the two-grid model. Using the matrix Ee
s and taking into account that uqe

h ⊂ ue
s, we obtain

uqe
h = Gqe

h ve
h, (12)

where Gqe
h is a square matrix.

For the region Sqe
r , we calculate the vector ũqe

h by the formula

ũqe
h = Gqe

0 ve
h. (13)

Combining (10) and (13), we obtain the inequality

‖uqe
0 − ũqe

h ‖ 6 ‖Gqe
0 ‖ ‖ve

0 − ve
h‖. (14)

As h → 0, the coefficients of the matrix Ke
0 appearing in (9) are limited (see Proposition 2) and, hence, the

coefficients of the matrix Gqe
0 are limited. Therefore, the norm of the square matrix Gqe

0 is limited as h → 0 [9].
Consequently, there exists a quantity Ce > 0 such that

‖Gqe
0 ‖ 6 Ce < ∞ (e = 1, . . . , N) (15)

as h → 0. Since uqe
0 ⊂ ue

0 and uqe
h ⊂ ue

s ⊂ ue
h, relation (8) implies

‖uqe
0 − uqe

h ‖ → 0 as h → 0. (16)

Using (15) and (8), from inequality (14) we obtain

‖uqe
0 − ũqe

h ‖ → 0 as h → 0. (17)

The inequality

‖ũqe
h − uqe

h ‖ 6 ‖ũqe
h − uqe

0 ‖+ ‖uqe
0 − uqe

h ‖

can be combined with (16) and (17) to give

‖ũqe
h − uqe

h ‖ → 0 as h → 0. (18)

For the grid displacements of the region Sqe
r , we define the mean local (relative) error εe

u and the quantity δe
u as

follows:

εe
u =

1
2q

2q∑
j=1

∣∣∣uqe
0j − uqe

hj

uqe
0j

∣∣∣, δe
u =

1
2q

2q∑
j=1

∣∣∣ ũqe
hj − uqe

hj

uqe
hj

∣∣∣, e = 1, . . . , N. (19)

Here uqe
0j , uqe

hj , and ũqe
hj are the components of the vectors uqe

0 , uqe
h , and ũqe

h , respectively, 2q is the dimension of
these vectors, and q is the total number of nodes in the region Sqe

r .
According to (19), we have εe

u = εe
u(uqe

0 ,uqe
h ), and δe

u = δe
u(ũqe

h ,uqe
h ). By virtue of (16), (18), and (19) and

since convergence in the norm (8) is equivalent to uniform convergence (i.e., |uqe
01 − uqe

h1| → 0, . . . , |ũqe
h2q −uqe

h2q| → 0
as h → 0) and the displacements in Sqe

r are limited and nonzero (see Proposition 4), we obtain

as h → 0: εe
u(uqe

0 ,uqe
h ) → 0, δe

u(ũqe
h ,uqe

h ) → 0. (20)

By virtue of (20), for any εr
0 > 0, there exists h or there exist vectors uqe

h and ũqe
h (uqe

0 = const because uqe
0 is an

exact solution, see Proposition 3) such that

εe
u(uqe

0 ,uqe
h ) < εr

0, δe
u(ũqe

h ,uqe
h ) < εr

0. (21)

Let εr
0 be a small quantity such that εe

u(uqe
0 ,uqe

h ) and δe
u(uqe

0 ,uqe
h ) can be considered equal, i.e.,

εe
u = δe

u. (22)
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Then, by virtue of (21) and (22), we infer that if δe
u < εr

0, then the estimate for εe
u is given by

εe
u < εr

0. (23)

In the two-grid model of a composite, we distinguish a set of regions Sqe
r (i.e., the region consisting of two-grid FEs

Sp
e ) in which the grid displacements (u or v) are maximal (in magnitude). Using formulas (12), (13), and (19),

for this set of regions Sqe
r we find the values of δe

u, where e = 1, . . . , N1 (N1 < N); N1 is the number of chosen
regions Sqe

r (number of chosen FEs Sp
e ). If δe

u > εr
0 (where the constant εr

0 is specified) for the chosen region Sqe
r ,

we diminish the step size h of the basic partitions of all two-grid FEs of the composite by virtue of (20) (the step
size h is varied according to the rule of Proposition 2) and find a solution for the newly constructed two-grid model.
As a result, we obtain a two-grid model such that the conditions δe

u < εr
0 (i.e., εe

u < εr
0), where e = 1, . . . , N1 hold

for all chosen regions. Thus, in the chosen regions Sqe
r in the two-grid model constructed, the mean local error εe

u

is smaller than the specified estimate εr
0. In (23), it is expedient to use the values εr

0 6 0.01 (i.e., εr
0 6 1%). If the

displacement functions vary only slightly on Se, the estimate for εr
0 can be extended to the entire region Se.

2.3. Procedure for Constructing Two-Grid Models for Specified Mean Local Error in Stresses.
We consider the main principles of this procedure using as an example a two-grid model for a two-dimensional
composite that consists of two-grid square FEs Sp

e and satisfies Propositions 1–4, where e = 1, . . . , N (N is the total
number of FEs Sp

e ). Let s solution (i.e., vectors ve
h) be constructed for the two-grid model.

We introduce the vectors uje
0 , uje

h , and ũje
h that contain the nodal displacements of the jth square FE Sh

j of
the region Sqe

r and correspond to the nodal-displacement vectors uqe
0 , uqe

h , and ũqe
h (j = 1, . . . ,m, where m is the

total number of FEs Sh
j of the region Sqe

r ). Let tje
0 = {σ0j

x σ0j
y τ0j

xy}t, tje
h = {σhj

x σhj
y τhj

xy}t, and t̃je
h = {σ̃hj

x σ̃hj
y τ̃hj

xy}t be
the vectors of stresses σ0j

x , . . . , τ̃hj
xy at the center of gravity of the FE Sh

j that correspond to the displacement vectors
uje

0 , uje
h , and ũje

h , respectively. Since the region Se in the two-grid and basic models consists of square FE Sh
j with

side h (see Propositions 1 and 2), the basic functions of the FE Sh
j of the region Sqe

r are equal for the two-grid
and basic models. Consequently, the vectors tje

0 , tje
h , and t̃je

h can be written as tje
0 = De

ju
je
0 , tje

h = De
ju

je
h , and

t̃je
h = De

j ũ
je
h , where De

j is a rectangular matrix. For simplicity, we take into account that uje
0 ⊂ uqe

0 , uje
h ⊂ uqe

h ,
and ũje

h ⊂ ũqe
h and write the vectors tje

0 , tje
h , and t̃je

h in the form

tje
0 = Me

j uqe
0 , tje

h = Me
j uqe

h , t̃je
h = Me

j ũqe
h . (24)

Here Me
j (j = 1, . . . ,) is a rectangular matrix.
The coefficients M je

αβ of the matrix Me
j depend on the elastic moduli of the square element Sh

j (with side h)
and the partial derivatives of its basic functions limited within the FE Sh

j for any h. It follows that |M je
αβ | < ∞ as

h → 0. For the grid equivalent stresses in the region Sqe
r , we use the mean local (relative) error εe

σ and quantity δe
σ

calculated by the formulas

εe
σ =

1
m

m∑
j=1

∣∣∣σqe
0j − σqe

hj

σqe
0i

∣∣∣, δe
σ =

1
m

m∑
j=1

∣∣∣σqe
hj − σ̃qe

hj

σqe
hj

∣∣∣, e = 1, . . . , N. (25)

We determine the equivalent stresses σqe
0j , σqe

hj , and σ̃qe
hj at the center of the jth FE Sh

j according to the fourth theory
of strength, i.e., we use the relation

σqe
0j =

√
(σ0j

x )2 + (σ0j
y )2 − σ0j

x σ0j
y + 3(τ0j

xy)2, tje
0 = {σ0j

x σ0j
y τ0j

xy}t, (26)

the values of σqe
hj and σ̃qe

hj are calculated by formula (26) in which the stress-vector components tje
0 are replaced by

the corresponding components of the stress vectors tje
h or t̃je

h .
According to (24) and (25), we obtain εe

σ = εe
σ(uqe

0 ,uqe
h ) and δe

σ = δe
σ(ũqe

h ,uqe
h ). By virtue of (12) and

(13), we have uqe
h = Gqe

h ve
h and ũqe

h = Gqe
0 ve

h and, hence, εe
σ = εe

σ(uqe
0 , Gqe

h ve
h) and δe

σ = δe
σ(Gqe

0 ve
h, Gqe

h ve
h). Since

uqe
0 = const (uje

0 ⊂ uqe
0 ⊂ ue

0 is an exact solution, see Proposition 3), we obtain

εe
σ = εe

σ(ve
h), δe

σ = δe
σ(ve

h). (27)

Consequently, the functions ye = ye(ve
h) and xe = xe(ve

h), where

ye = εe
σ(ve

h), xe = δe
σ(ve

h), (28)
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are related by an equation of the form ye = Fe(xe). Using (16), (18), and (24) and taking into account that
|M je

αβ | < ∞ and the norm (8) ensures uniform convergence uqe
h → uqe

0 and ũqe
h → uqe

h as h → 0, one can easily show
that

‖tje
h − tje

0 ‖ = ‖Me
j (uqe

h − uqe
0 )‖ → 0, ‖t̃je

h − tje
h ‖ = ‖Me

j (ũqe
h − uqe

0 )‖ → 0

as h → 0. Using (26) and taking into account that the uniform convergence tje
h → tje

0 and t̃je
h → tje

h (i.e.,
|σ0j

x − σhj
x | → 0, |σ0j

y − σhj
y | → 0, . . . , and |σ̃hj

x − σhj
x | → 0 as h → 0) and σqe

0j , σ
qe
hj , σ̃

qe
hj < ∞ and σqe

0j , σ
qe
hj , σ̃

qe
hj 6= 0

(see Proposition 4), one can readily show that |σqe
hj − σqe

0j | → 0 and |σ̃qe
hj − σqe

hj | → 0 as h → 0. By virtue of (25), we
obtain

h → 0: εe
σ → 0, δe

σ → 0. (29)

Using (8), (27), and (29), we infer that εe
σ(ve

h) → εe
σ(ve

0) = 0 and δe
σ(ve

h) → δe
σ(ve

0) = 0 as h → 0, i.e., as ve
h → ve

0.
From this, by virtue of (28) we have ye(ve

h) → ye(ve
0) = 0 and xe(ve

h) → xe(ve
0) = 0 for ve

h → ve
0. Thus, the

functions ye(ve
h) and xe(ve

h) vanish at the same point (ve
0) and, hence, Fe(0) = 0 on the right since xe > 0.

Similar reasoning to that in Sec. 2.2 shows that if δe
σ < δr

0, the error εe
σ has an estimate εe

σ < δr
0, where δr

0

is specified. Let δr
0 be a small quantity such that δe

σ = εe
σ. These conditions for the error εe

σ hold for small values
of δr

0 (δr
0 6 0.01) and, hence, they are difficult to satisfy since it is necessary to use very fine basic partitions of FE

Sp
e . We consider another method for estimating the errors εe

σ.
Since Fe(0) = 0, the function Fe(xe) in the ε-neighborhood of the zero point (on the right of zero), i.e., on

the segment [0, ε] can be written in approximate form Fe(xe) = bexe +ae
1x

2
e + . . .+ae

nxn+1
e , where be, a

e
i = const, n is

an integer, and 0 6 xe 6 ε. Let ε � 1, i.e., xe � 1. Setting ae
1x

2
e = 0, . . . , ae

nxn+1
e = 0, we obtain Fe(xe) = bexe,

i.e., a linear function of the form ye = bexe, where be > 0 since xeye > 0. For this linear function and any value
of δr (0 < δr < ε), we find that if xe < δr, then ye < εe

r, where εe
r = beδr. With allowance for (28), it follows that if

δe
σ < δr, the following estimate for εe

σ holds:

εe
σ 6 εr, e = 1, . . . , N2. (30)

Here εr = max (εe
r) (e = 1, . . . , N2, where N2 is the total number of chosen regions Sqe

r , i.e., the number of chosen
FEs Sp

e in which the stresses are analyzed, N2 < N), εr, δr = const, and εr, δr � 1 (εr is specified).
Since εe

r = beδr (be = const) and εr = max (εe
r), then εr = max (beδr), i.e., εr = bδr, where b = max (be),

e = 1, . . . , N2. Thus, εr depends on δr and, what is more important, the quantity εr decreases with δr. Given
the quantity εr, we determine δr using test calculations. In the two-grid model of a two-dimensional composite,
we choose a set of regions Sqe

r (i.e., subregion consisting of FEs Sp
e ) in which the equivalent stresses attain the

maximum value. For the regions Sqe
r , we determine the quantities δe

σ (e = 1, . . . , N2) using formula (25). If δe
σ > δr

for the chosen region Sqe
r , we decrease the step size h of the basic partitions of all two-grid FEs by virtue of (29)

and find the solution for the newly constructed two-grid model. As a result, we obtain a two-grid model for which
the condition δe

σ < δr, i.e., εe
σ 6 εr is satisfied in the chosen subregion. According to calculations, in (30) for the

specified εr = 0.02 (εr = 2%), it is expedient to use values δr 6 0.06 (i.e., δr 6 6%). If the stresses vary only slightly
in Se, the estimate of εr can be extended to the entire region Se. In practice, one should use the region Se

r ⊂ Sqe
r

whose shape is convenient for calculations.
Remark 2. Calculations show that for specified εr

0, δr, and εr � 1, estimates (23) and (30) for the errors
εe

u and εe
σ, respectively, are also valid for the regions Sqe

r in the chosen FEs Sp
e whose structures differ. Hence,

the quantities εr
0 and δr, and εr do no depend on the structure of the FE Sp

e . Indeed, estimates (23) and (30) are
based on conditions (8) and the assumption of Proposition 3, which hold for two-grid square FEs Sp

e of any regular
composite structure.

Remark 3. Similar reasoning to that made above for composite models consisting of two-grid (four-grid)
FEs V p

e shaped like a cube (right-angle prism) using propositions similar to Propositions 1–4 leads to estimates of
the form (23) and (30) for the mean local errors in displacements and equivalent stresses in the subregions located
at the center of the FEs V p

e .
3. Numerical Results. We consider plane stresses in a two-dimensional composite S of irregular structure

with a filling ratio to 0.218 in a Cartesian coordinate system xOy (Fig. 3a). The boundary conditions have the form
u = v = 0 for y = 0 and 2a 6 x 6 5a and x = 0 and 3a 6 y 6 5a (in Fig. 3a, the fixed boundary of S is dashed).
The region occupied by the composite is divided into square subregions Se with side a = 60h, where e = 1, . . . , 43.
The composite structure consists of four typical composite square regions Sk with side a (Fig. 3b, k = 1, 2, 3, 4).
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Fig. 3. Calculated diagram of the composite S (a) and composite structures of typical regions Sk (b).
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Fig. 4. Diagram of the errors εe
u and values of δe

u for the displacements of the regions Se
r ⊂ Se.

The region Sk is reinforced by flat fibers of width 2h inside the region and h on its boundary. In Fig. 3, the fibers
are shown by lines and the value of the filling ratio Sk is given in parentheses. To construct a two-grid FE Sp

e in
the region Se, we use the grid of its basic partition, which consists (as the basic composite model) of first-order
square FEs Sh with side h [7] and four identical one-dimensional grids with step size 4h. For the nodes of the
basic partition of the composite S, we introduce integer coordinates i and j (Fig. 3a). The forces Px = 87.5 and
Py = 96.3 act at the nodes with coordinates (481, 181), (481, 241), and (181, 361). Calculations were performed for
h = 0.5, Poisson’s ratio for all composite components of 0.3, a fiber Young’s modulus of 10, and a binder Young’s
modulus of 1.

The maximum value of the displacements uh and vh for the two-grid model differs from the displacements
u0 and v0 for the basic model by 0.4%. The maximum equivalent stress σh calculated at the center of FE Sh for
the two-grid model using the fourth theory of strength [10] differs from the stresses σ0 of the basic model by 0.3%.

Figures 4 and 5 show diagrams of the errors εe
u and εe

σ and values of δe
u and δe

σ (in percent) calculated by
formulas (19) and (25) for the 4h× 4h region Se

r (Se
r ⊂ Sqe

r ); in the region Se, the upper numbers refer to εe
u and

εe
σ and the lower numbers to δe

u and δe
σ. For example, εe

u = 0.35% and δe
u = 0.09% for Se adjacent to the origin
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Fig. 5. Chart of the errors εe
σ and values of δe

σ for the stresses of the regions Se
r ⊂ Se.

of the coordinates xOy (see Fig. 4). In Figs. 3a, 4, and 5, the thick solid lines show FEs Sp
e in which σh or uh

and vh attain the maximum values. An analysis shows that for all regions Se
r of the chosen FE Sp

e , estimate (23)
for εe

u holds for εr
0 = 0.01 (εr

0 = 1%) and estimate (30) for εe
σ holds for δr = 0.06 and εr = 0.02 (δr = 6% and

εr = 2%). The estimates for the errors εe
u and εe

σ can be extended to the entire region Se. We find that εe
u < 1% in

the neighborhood of the maximum displacement of the composite and εe
σ < 2% near the points of application of the

forces. For δr 6 0.06 and εr = 0.02, estimate (30) is also valid for the subregions Se
r of the FEs Sp

e (in Figs. 3a and
5, these FEs are shown by thick dashed lines), where σh is approximately 10 times lower than the maximum stress.
We note that for the given values of εr

0, δr, and εr, estimates (23) and (30) for the errors εe
u and εe

σ, respectively,
are valid for Se

r of the chosen FEs Sp
e of different composite structure (see Fig. 3a). Finite-element implementation

for the two-grid composite model is 20 times faster and requires 150 times smaller computer memory than that for
the basic model.

REFERENCES

1. T. Fudzii and M. Dzako, Fracture Mechanics of Composite Materials [Russian translation], Mir, Moscow (1982).
2. V. A. Postnov, Numerical Methods in Calculation of Ship Structures [in Russian], Sudostroenie, Leningrad

(1977).
3. A. D. Matveev, “Elastic Multigrid Finite Elements. Analysis of Composites with Allowance for their Structure,”

Krasnoyarsk (1998). Deposited at VINITI 11.06.98, No. 3219-B98.
4. A. D. Matveev, “Some Approaches for Constructing Elastic Multigrid Finite Elements,” Krasnoyarsk (2000).

Deposited at VINITI 11.24.00, No. 2990-B00,
5. V. I. Samul’, Fundamentals of the Theory of Elasticity and Plasticity [in Russian], Vysshaya Shkola, Moscow

(1970).
6. D. H. Norrie and G. De Vries, An Introduction to Finite-Element Analysis, Academic Press, New York (1978).
7. G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Engiwood Cliffs, Prentice-Hall (1973).
8. P. M. Varvak, I. M. Burzun, A. S. Gorodetskii, et al., Finite Element Method [in Russian], Vishcha Shkola,

Kiev (1981).
9. N. S. Bakhvalov, Numerical Methods, Vol. 1 [in Russian], Nauka, Moscow (1973).

10. G. S. Pisarenko, A. P. Yakovlev, and V. V. Matveev, Strength of Materials [in Russian], Naukova Dumka, Kiev
(1975).

448


