MULTIGRID MODELS OF COMPOSITE MATERIALS

OF IRREGULAR STRUCTURE WITH A SMALL FILLING RATIO

A. D. Matveev

UDC 539.3

Abstract

This paper considers composites consisting of a set of typical composite multigrid finite elements whose structures are regular and different. Mean local errors are proposed for multigrid modeling of composites.

Key words: composites, irregular structure, multigrid finite element, mean local errors.

Introduction. Composites have been usually studied using micro- and macromodels [1]. In macromodels, a composites is considered a homogeneous body with certain (fictitious) elastic moduli. Furthermore, the deformation of composites is described invoking various hypotheses, depending on composite structure. These hypotheses impose certain constraints on displacements, strains, and stresses, which introduces an inherent error into the solutions. Constructing solutions for a composite macromodel reduces to finding fictitious elastic moduli of the composite, which is a difficult problem. Serious difficulties arise when macromodels are used to analyze composites of irregular structure with a small filling ratio. Micromodels provide an adequate description of the behavior of composites. However, finite-element (basic) composite models constructed using the microapproach have large dimensions [1]. The use of superelements to decrease the dimension of these models is not effective [2].

In the present paper, composites of irregular structure with a small filling ratio are analyzed by multigrid modeling, which reduces to constructing a multigrid discrete model on the basic composite model. This model consists of composite multigrid finite elements (CMFEs) [3, 4]. To design an m-grid composite finite element (FE), one uses m nested grids. The finest grid is generated by basic partition taking into account the CMFE structure, and the remaining $m-1$ grids are determined on its boundary. Construction of CMFEs reduces to eliminating all nodal unknowns in the basic partition inside the region and most of the unknowns on the boundary.

An advantage of multigrid modeling is that multigrid models take into account composite structure and the model dimension is much smaller than that of basic composite models and, hence, finite-element implementation for multigrid models requires much less computer time and memory than that for basic models.

We consider composites consisting of typical square two-grid finite elements of the same size which have identical fine and coarse grids. The composite structures of typical CMFEs are assumed to be regular and different. Calculations show that the error of grid solutions is a function of coordinates. It is therefore reasonable to analyze the solutions by using the mean local errors in grid displacements and stresses in relatively small subregions of the composite. We describe procedures that allow one to construct two-grid models of composites so that the mean local errors in grid displacements or equivalent stresses in indicated subregions are smaller than a certain specified value. An example of calculations is given and calculation results are analyzed.

1. Composite Multigrid Finite Elements. We consider the main principles of designing CMFEs using as an example a composite five-grid rectangular finite element (RFE) $A B C D$ with dimensions $a \times b$ (Fig. 1) subjected to plane stresses. In Fig. 1, the RFE comprises rigid flat fibers of width h (dashed) and a $3 h \times 2 h$ particle (dashed). We assume that the constraints between the components of the composite RFE are ideal and the displacements, stresses, and strains of these components obey Hooke's law and Cauchy's relations [5]. The basic partition of the RFE, which consists of first-order square finite elements S^{h} with side h, takes into account its structure and

[^0]

Fig. 1. Composite five-grid RFE.
generates a fine grid S_{h} with size h, whose nodal unknowns are the displacements u and v. On the grid S_{h}, we construct a rectangular superelement [2], whose potential energy Π_{s}^{e} is given by

$$
\begin{equation*}
\Pi_{s}^{e}\left(\boldsymbol{v}_{s}^{e}\right)=(1 / 2)\left(\boldsymbol{v}_{s}^{e}\right)^{\mathrm{t}} K_{s}^{e} \boldsymbol{v}_{s}^{e}-\left(\boldsymbol{v}_{s}^{e}\right)^{\mathrm{t}} \boldsymbol{P}_{s}^{e} \tag{1}
\end{equation*}
$$

where $K_{s}^{e}, \boldsymbol{P}_{s}^{e}$, and \boldsymbol{v}_{s}^{e} are the stiffness matrix, the nodal-force vector, and the vector of the nodal unknowns of the superelement, respectively.

On each side of the RFE, we construct a one-dimensional (coarse) grid L_{i} (nested into the fine grid S_{h}) with size $h_{i}(i=1,2,3,4)$. On the coarse grid L_{i} of the superelement, we construct additional functions u_{i} and v_{i} that approximate the displacements (see [6]):

$$
\begin{equation*}
u_{i}=\boldsymbol{N}_{i} \boldsymbol{q}_{i}^{u}, \quad v_{i}=\boldsymbol{N}_{i} \boldsymbol{q}_{i}^{v} . \tag{2}
\end{equation*}
$$

Here \boldsymbol{N}_{i} is the vector of shape functions of the grid L_{i}, and \boldsymbol{q}_{i}^{u} and \boldsymbol{q}_{i}^{v} are the vectors of the nodal values of the functions u_{i} and v_{i} on the grid $L_{i}(i=1,2,3,4)$, respectively.

Let \boldsymbol{v}_{h}^{e} denote the vector of the nodal unknowns of a composite five-grid RFE that includes the FEM parameters of those nodes of the superelement which are the nodes of the coarse grids L_{i}. In Fig. 1, these nodes are shown by filled circles (10 nodes). We introduce the vector

$$
\begin{equation*}
\boldsymbol{q}_{0}^{e}=\left\{\boldsymbol{q}_{1}^{u} \boldsymbol{q}_{2}^{u} \boldsymbol{q}_{3}^{u} \boldsymbol{q}_{4}^{u} \boldsymbol{q}_{1}^{v} \boldsymbol{q}_{2}^{v} \boldsymbol{q}_{3}^{v} \boldsymbol{q}_{4}^{v}\right\}^{\mathrm{t}} \tag{3}
\end{equation*}
$$

and write the following matrix relation between the vectors \boldsymbol{v}_{h}^{e} and \boldsymbol{q}_{0}^{e} :

$$
\begin{equation*}
\boldsymbol{q}_{0}^{e}=B_{s}^{e} \boldsymbol{v}_{h}^{e} \tag{4}
\end{equation*}
$$

where B_{s}^{e} is a rectangular Boolean matrix.
We assume that the values of the functions u_{i} and v_{i} at the boundary nodes of the fine grid are equal to the corresponding components of the vector \boldsymbol{v}_{s}^{e}. Using these equalities and (2) and (3), the vector \boldsymbol{v}_{s}^{e} is expressed in terms of \boldsymbol{q}_{0}^{e} :

$$
\begin{equation*}
\boldsymbol{v}_{s}^{e}=A_{s}^{e} \boldsymbol{q}_{0}^{e} \tag{5}
\end{equation*}
$$

where A_{s}^{e} is a rectangular matrix.
Substituting (5) into (1) and using (4) and the condition $\partial \Pi_{s}^{e} / \partial \boldsymbol{v}_{h}^{e}=0$, we obtain

$$
\begin{equation*}
K_{t}^{e} \boldsymbol{v}_{h}^{e}=\boldsymbol{F}_{t}^{e}, \tag{6}
\end{equation*}
$$

where $K_{t}^{e}=\left(B_{s}^{e}\right)^{\mathrm{t}}\left(A_{s}^{e}\right)^{\mathrm{t}} K_{s}^{e} A_{s}^{e} B_{s}^{e}$ is the stiffness matrix and $\boldsymbol{F}_{t}^{e}=\left(B_{s}^{e}\right)^{\mathrm{t}}\left(A_{s}^{e}\right)^{\mathrm{t}} \boldsymbol{P}_{s}^{e}$ is the nodal-force vector of the composite five-grid RFE.

Thus, the RFE is a five-grid finite element since it contains five nodal grids - one grid S_{h} and four grids L_{i}. For $a=b$ and $h_{1}=h_{2}=h_{3}=h_{4}=H$, we obtain a square two-grid FE. CMFEs shaped like a triangle and a rectangular parallelepiped can be constructed in a similar manner. Figure 2 shows a four-grid FE shaped like a right-angle prism, which has a three-dimensional fine grid with step size h along the axes $O x, O y$, and $O z$ and three two-dimensional coarse grids lying on the adjacent faces of this FE. The nodes of the coarse grids are shown by filled circles. A discrete composite model that consists of m-grid finite elements is called an m-grid model.

Fig. 2. Four-grid FE V_{e}^{p}.

Remark 1. We introduce the vector \boldsymbol{W}_{0} of nodal displacements in the basic model (basic partition) of the composite. Let $\left\|\boldsymbol{W}^{0}-\boldsymbol{W}_{0}\right\| \leqslant \delta_{1}$, where \boldsymbol{W}^{0} is an exact solution and let $\left\|\boldsymbol{W}_{0}-\boldsymbol{W}^{h}\right\| \leqslant \delta$, where \boldsymbol{W}^{h} is the nodal displacement vector of the composite model. In this case, we obtain $\left\|\boldsymbol{W}^{0}-\boldsymbol{W}^{h}\right\| \leqslant \delta_{0}$, where $\delta_{0}=\delta_{1}+\delta$. The error δ_{1} is defined by the basic partition of the composite. The factors affecting this error have been studied in FEM theory [7]. Let $\delta_{1}=0$ for the basic partition. In this case, testing of the multigrid model reduces to determining the error δ. Calculations show that the most significant change in δ is observed for simultaneous variation in the structures (step sizes) of the fine and coarse grids.
2. Using Mean Local Errors in Multigrid Modeling of Composites. Calculations show that the error δ (see Remark 1) is a function of coordinates and its values can vary over a wide range. We note that, in calculations, it is most important to know the error in the maximum displacements and stresses. In this connection, in the analysis of grid solution, it is proposed to use the mean local errors determined for displacements (stresses) in small subregions lying at the center of the CFME. We consider the mean local errors in multigrid modeling of composites using some propositions, whose essence is illustrated for two-grid models of two-dimensional composites.
2.1. Basic Propositions of Two-Grid Models for Two-Dimensional Composites. Proposition 1. A two-dimensional composite located in a Cartesian coordinate system $x O y$ is subjected to plane stresses and represented by square regions S_{e} with side a, where $e=1, \ldots, N\left(N\right.$ is the total number of regions $\left.S_{e}\right)$. The basic partition (basic model) of the composite, consisting of first-order square FEs S_{j}^{h} with side h, takes into account the structure of the composite. The components of the composite are isotropic homogeneous bodies. The two-grid model of the composite consists of two-grid square FEs S_{e}^{p} with side $a(e=1, \ldots, N$, where N is the total number of FEs S_{e}^{p}), whose composite structures are regular and different. The basic partition of the region S_{e} of the two-grid FE S_{e}^{p} consists of square FEs S_{j}^{h} and generates a fine square grid S_{h} with step size h (as in the region S_{e} of the basic composite model). On the sides of the $\mathrm{FE} S_{e}^{p}$ there are four identical coarse grids: L_{1}, L_{2}, L_{3}, and L_{4} with the step size $H=k h$, where k is an integer. The two-grid FE S_{e}^{p} have identical fine and one-dimensional coarse grids (S_{h} and L_{i}, respectively). Let \boldsymbol{w}_{h}^{e} and \boldsymbol{w}_{0}^{e} denote the nodal displacement vectors of the fine grid S_{h} of the region S_{e} that correspond to the two-grid and basic models, respectively.

Proposition 2. For the regions S_{e} of the basic and two-grid models of the composite, we use the same law of partition into FE S_{j}^{h}. For the region S_{e}, we construct a sequence of partitions $\left\{R_{n}\right\}_{n=1}^{n=\infty}$ (basic partitions) that take into account the composite structure of the region S_{e} for any n. For the partition R_{n}, the step size h of the fine grid S_{h} is given by $h=h_{0} / n$, where $h_{0}=a / l(l$ is an integer $)$; in this case, we have $k_{1}=l / k$, where k_{1} is an integer. The notation $h \rightarrow 0$ means that $h=h_{0} / n \rightarrow 0$ as $n \rightarrow \infty$, where $a, h_{0}, k=$ const; i.e., the quantities a, l, and k are specified. It is worth noting that, given the partition law for the region S_{e}, the square FEs S_{j}^{h} of the partitions R_{n} are isotropic and homogeneous. It is well known [8] that the stiffness-matrix coefficients of the first-order isotropic homogeneous square FEs S_{j}^{h} with side h are independent of h and limited. Hence, as $h \rightarrow 0$, the coefficients of the finite-element equations constructed for the partitions R_{n} do not increase; i.e., they are limited.

Proposition 3. We write the vectors \boldsymbol{w}_{h}^{e} and \boldsymbol{w}_{0}^{e} in the form

$$
\begin{equation*}
\boldsymbol{w}_{0}^{e}=\left\{\boldsymbol{u}_{0}^{e} \boldsymbol{v}_{0}^{e}\right\}^{\mathrm{t}}, \quad \boldsymbol{w}_{h}^{e}=\left\{\boldsymbol{u}_{h}^{e} \boldsymbol{v}_{h}^{e}\right\}^{\mathrm{t}} \tag{7}
\end{equation*}
$$

where $\boldsymbol{v}_{0}^{e}\left(\boldsymbol{v}_{h}^{e}\right)$ is a vector that contain the displacement values of all nodes of the coarse grids L_{i} of the region S_{e}
and $\boldsymbol{u}_{0}^{e}\left(\boldsymbol{u}_{h}^{e}\right)$ is a vector that contains the displacement values of the nodes of the fine grid S_{h} of the region S_{e} that do not coincide with the nodes of the coarse grids.

We assume that $\left\|\boldsymbol{w}_{0}^{e}-\boldsymbol{w}_{h}^{e}\right\| \rightarrow 0(e=1, \ldots, N)$ as $h \rightarrow 0$ for two-grid square FEs of any regular composite structure; i.e., let

$$
\begin{equation*}
h \rightarrow 0: \quad\left\|\boldsymbol{u}_{0}^{e}-\boldsymbol{u}_{h}^{e}\right\| \rightarrow 0, \quad\left\|\boldsymbol{v}_{0}^{e}-\boldsymbol{v}_{h}^{e}\right\| \rightarrow 0, \quad\|\boldsymbol{u}\|=\max \left|u_{i}\right| \tag{8}
\end{equation*}
$$

where u_{i} are the components of the vector \boldsymbol{u}.
Let the basic partition of the composite be such that the finite-element solution can be considered exact, i.e., we assume that the displacement vectors \boldsymbol{w}_{0}^{e} (vectors \boldsymbol{u}_{0}^{e} and \boldsymbol{v}_{0}^{e}) are an exact solution.

Proposition 4. The mean local errors are determined for the grid displacements and stresses in a small region $S_{r}^{q e}$ at the center of a square two-grid FE $S_{e}^{p}\left(S_{r}^{q e} \subset S_{e}\right)$ and contains q nodes of the fine grid such that $2 q$ is the dimension of the vector \boldsymbol{v}_{0}^{e}. We assume that for any h in the region $S_{r}^{q e}$, the displacements, stresses, and equivalent stresses are limited and nonzero. With allowance for (7), the finite-element system of equations for the partition S_{h} of the region S_{e} of the basic composite model can be written in matrix form

$$
\left[\begin{array}{cc}
A_{0}^{e} & B_{0}^{e} \tag{9}\\
C_{0}^{e} & D_{0}^{e}
\end{array}\right]\left\{\begin{array}{c}
\boldsymbol{u}_{0}^{e} \\
\boldsymbol{v}_{0}^{e}
\end{array}\right\}=\left\{\begin{array}{c}
\boldsymbol{R}_{0}^{e} \\
\boldsymbol{P}_{0}^{e}
\end{array}\right\}, \quad K_{0}^{e}=\left[\begin{array}{cc}
A_{0}^{e} & B_{0}^{e} \\
C_{0}^{e} & D_{0}^{e}
\end{array}\right], \quad \boldsymbol{F}_{0}^{e}=\left\{\begin{array}{c}
\boldsymbol{R}_{0}^{e} \\
\boldsymbol{P}_{0}^{e}
\end{array}\right\}
$$

where A_{0}^{e} and D_{0}^{e} are square matrices, B_{0}^{e} and C_{0}^{e} are rectangular matrices, \boldsymbol{R}_{0}^{e} is the vector of nodal forces acting at the nodes of the fine grid S_{h} that do not coincide with the coarse-grid nodes, \boldsymbol{P}_{0}^{e} is the vector of nodal forces acting at the nodes of the coarse grids in the region S_{e}, K_{0}^{e} is the stiffness matrix, and \boldsymbol{F}_{0}^{e} is the vector of nodal forces of the partition S_{h}. The displacement vectors \boldsymbol{u}_{0}^{e} and \boldsymbol{v}_{0}^{e} take into account the boundary conditions of the region S_{e}, and the dimension of the vector \boldsymbol{u}_{0}^{e} is greater than that of the vector \boldsymbol{v}_{0}^{e}.

From system (9), we obtain $\boldsymbol{u}_{0}^{e}=E_{0}^{e} \boldsymbol{v}_{0}^{e}$, where $E_{0}^{e}=\left(A_{0}^{e}\right)^{-1} \boldsymbol{R}_{0}^{e}-\left(A_{0}^{e}\right)^{-1} B_{0}^{e}$ and $\left(A_{0}^{e}\right)^{-1}$ is the inverse matrix. We us $\boldsymbol{u}_{0}^{q e}$ to denote the nodal-displacement vector of the region $S_{r}^{q e}$ that corresponds to equilibrium of the basic model. Let the number of nodes q in the region $S_{r}^{q e}$ be such that the dimensions of the vectors $\boldsymbol{u}_{0}^{q e}$ and \boldsymbol{v}_{0}^{e} are equal to $2 q$. Using the matrix E_{0}^{e} and taking into account that $\boldsymbol{u}_{0}^{q e} \subset \boldsymbol{u}_{0}^{e}$, we construct the equality $\boldsymbol{u}_{0}^{q e}=\left(A_{0}^{q e} \boldsymbol{R}_{0}^{e}-Q_{0}^{q e}\right) \boldsymbol{v}_{0}^{e}$, where $A_{0}^{q e}$ and $Q_{0}^{q e}$ are rectangular and square matrices, respectively. Let $\boldsymbol{R}_{0}^{e}=\left\{\boldsymbol{R}_{p}^{e} \boldsymbol{R}_{g}^{e}\right\}^{\mathrm{t}}$, where \boldsymbol{R}_{g}^{e} is the vector of nodal forces acting on the boundary of the region S_{e} (we note that since the vector \boldsymbol{w}_{0}^{e} is unknown, the forces \boldsymbol{R}_{g}^{e} are also unknown) and \boldsymbol{R}_{p}^{e} is the vector of nodal forces acting inside the region S_{e}, i.e., the vector of specified nodal forces. It is well known that the farther the point of application of a point force from the region $S_{r}^{q e}$, the smaller its effect on the displacement field in this region. We assume that the forces \boldsymbol{R}_{g}^{e} have little effect on the displacements in the region $S_{r}^{q e}$, i.e., the displacements are determined under the assumption that $\boldsymbol{R}_{g}^{e}=0$. We note that \boldsymbol{R}_{g}^{e} is the part of the nodal forces of the region S_{e} that are distributed uniformly along the region boundary. We find the displacements $\boldsymbol{u}_{p}^{q e}=\left(A_{0}^{q e}\left\{\boldsymbol{R}_{p}^{e} 0\right\}^{t}-Q_{0}^{q e}\right) \boldsymbol{v}_{0}^{e}$. Let $\varepsilon_{0}^{e}=\left\|\boldsymbol{u}_{0}^{q e}-\boldsymbol{u}_{p}^{q e}\right\|$ be a small quantity such that we can set $\varepsilon_{0}^{e}=0$, i.e., $\boldsymbol{u}_{0}^{q e}=\boldsymbol{u}_{p}^{q e}$. In this case, the nodal displacements $\boldsymbol{u}_{0}^{q e}$ of the region $S_{r}^{q e}$ are calculated by the formula

$$
\begin{equation*}
\boldsymbol{u}_{0}^{q e}=G_{0}^{q e} \boldsymbol{v}_{0}^{e}, \tag{10}
\end{equation*}
$$

where $G_{0}^{q e}=A_{0}^{q e}\left\{\boldsymbol{R}_{p}^{e} 0\right\}^{\mathrm{t}}-Q_{0}^{q e}$ is a square matrix; the nodal-force vector \boldsymbol{R}_{p}^{e} is specified.
The relations between the parameters a, h, and k of the two-grid FEs S_{e}^{p}, for which the representation (10) is used with a specified error ε_{0}^{e}, are determined from results of numerical experiments. Propositions similar to Propositions 1-4 are also formulated for two-grid (four-grid) models of three-dimensional composites consisting of two-grid (four-grid) FEs shaped like a cube (rectangular parallelepiped) whose composite structures are regular and different.
2.2. Procedure for Constructing Two-Grid Composite Models with a Specified Local Error in Displacements. We consider the main principles of this procedure using as an example a two-grid model for a two-dimensional composite. The model consists of two-grid FEs S_{e}^{p} and satisfies Propositions 1-4. Let a grid solution be constructed for this model; i.e., let the vectors $\boldsymbol{v}_{h}^{e}(e=1, \ldots, N)$ be determined. We note that \boldsymbol{v}_{h}^{e} is the nodal-displacement vector of the two-grid FE S_{e}^{p}.

We write the vector \boldsymbol{u}_{h}^{e} [see formula (7)] in the form $\boldsymbol{u}_{h}^{e}=\left\{\boldsymbol{u}_{s}^{e} \boldsymbol{v}_{g}^{e}\right\}^{\mathrm{t}}$, where \boldsymbol{u}_{s}^{e} is a vector that contains the displacement values of the internal nodes of the fine grid S_{h} in the region S_{e} and \boldsymbol{v}_{g}^{e} is a vector that contains the displacement values of the boundary nodes of the grid S_{h} that do not coincide with the coarse-grid nodes. In this case, the vector \boldsymbol{v}_{s}^{e} of boundary nodal displacements of the grid S_{h} (i.e., the nodal-displacement vector for
the superelement constructed for the partition S_{h} of the region S_{e}) has the form $\boldsymbol{v}_{s}^{e}=\left\{\boldsymbol{v}_{g}^{e} \boldsymbol{v}_{h}^{e}\right\}^{\mathrm{t}}$. Using the matrix relations for the superelement, we express the vector \boldsymbol{u}_{s}^{e} in terms of \boldsymbol{v}_{s}^{e} (see [2]):

$$
\begin{equation*}
\boldsymbol{u}_{s}^{e}=M_{s}^{e} \boldsymbol{v}_{s}^{e} . \tag{11}
\end{equation*}
$$

Here M_{s}^{e} is a rectangular matrix.
Let $a=b$ and $h_{1}=h_{2}=h_{3}=h_{4}=H$. Substitution of (4) and (5) into (11) yields $\boldsymbol{u}_{s}^{e}=E_{s}^{e} \boldsymbol{v}_{h}^{e}$, where $E_{s}^{e}=M_{s}^{e} A_{s}^{e} B_{s}^{e}$. We introduce the vector $\boldsymbol{u}_{h}^{q e}$ of the nodal displacements of the region $S_{r}^{q e}$ that corresponds to equilibrium of the two-grid model. Using the matrix E_{s}^{e} and taking into account that $\boldsymbol{u}_{h}^{q e} \subset \boldsymbol{u}_{s}^{e}$, we obtain

$$
\begin{equation*}
\boldsymbol{u}_{h}^{q e}=G_{h}^{q e} \boldsymbol{v}_{h}^{e} \tag{12}
\end{equation*}
$$

where $G_{h}^{q e}$ is a square matrix.
For the region $S_{r}^{q e}$, we calculate the vector $\tilde{u}_{h}^{q e}$ by the formula

$$
\begin{equation*}
\tilde{u}_{h}^{q e}=G_{0}^{q e} \boldsymbol{v}_{h}^{e} . \tag{13}
\end{equation*}
$$

Combining (10) and (13), we obtain the inequality

$$
\begin{equation*}
\left\|\boldsymbol{u}_{0}^{q e}-\tilde{\boldsymbol{u}}_{h}^{q e}\right\| \leqslant\left\|G_{0}^{q e}\right\|\left\|\boldsymbol{v}_{0}^{e}-\boldsymbol{v}_{h}^{e}\right\| \tag{14}
\end{equation*}
$$

As $h \rightarrow 0$, the coefficients of the matrix K_{0}^{e} appearing in (9) are limited (see Proposition 2) and, hence, the coefficients of the matrix $G_{0}^{q e}$ are limited. Therefore, the norm of the square matrix $G_{0}^{q e}$ is limited as $h \rightarrow 0$ [9]. Consequently, there exists a quantity $C_{e}>0$ such that

$$
\begin{equation*}
\left\|G_{0}^{q e}\right\| \leqslant C_{e}<\infty \quad(e=1, \ldots, N) \tag{15}
\end{equation*}
$$

as $h \rightarrow 0$. Since $\boldsymbol{u}_{0}^{q e} \subset \boldsymbol{u}_{0}^{e}$ and $\boldsymbol{u}_{h}^{q e} \subset \boldsymbol{u}_{s}^{e} \subset \boldsymbol{u}_{h}^{e}$, relation (8) implies

$$
\begin{equation*}
\left\|\boldsymbol{u}_{0}^{q e}-\boldsymbol{u}_{h}^{q e}\right\| \rightarrow 0 \quad \text { as } \quad h \rightarrow 0 \tag{16}
\end{equation*}
$$

Using (15) and (8), from inequality (14) we obtain

$$
\begin{equation*}
\left\|\boldsymbol{u}_{0}^{q e}-\tilde{\boldsymbol{u}}_{h}^{q e}\right\| \rightarrow 0 \quad \text { as } \quad h \rightarrow 0 \tag{17}
\end{equation*}
$$

The inequality

$$
\left\|\tilde{\boldsymbol{u}}_{h}^{q e}-\boldsymbol{u}_{h}^{q e}\right\| \leqslant\left\|\tilde{\boldsymbol{u}}_{h}^{q e}-\boldsymbol{u}_{0}^{q e}\right\|+\left\|\boldsymbol{u}_{0}^{q e}-\boldsymbol{u}_{h}^{q e}\right\|
$$

can be combined with (16) and (17) to give

$$
\begin{equation*}
\left\|\tilde{\boldsymbol{u}}_{h}^{q e}-\boldsymbol{u}_{h}^{q e}\right\| \rightarrow 0 \quad \text { as } \quad h \rightarrow 0 \tag{18}
\end{equation*}
$$

For the grid displacements of the region $S_{r}^{q e}$, we define the mean local (relative) error ε_{u}^{e} and the quantity δ_{u}^{e} as follows:

$$
\begin{equation*}
\varepsilon_{u}^{e}=\frac{1}{2 q} \sum_{j=1}^{2 q}\left|\frac{u_{0 j}^{q e}-u_{h j}^{q e}}{u_{0 j}^{q e}}\right|, \quad \delta_{u}^{e}=\frac{1}{2 q} \sum_{j=1}^{2 q}\left|\frac{\tilde{u}_{h j}^{q e}-u_{h j}^{q e}}{u_{h j}^{q e}}\right|, \quad e=1, \ldots, N . \tag{19}
\end{equation*}
$$

Here $u_{0 j}^{q e}, u_{h j}^{q e}$, and $\tilde{u}_{h j}^{q e}$ are the components of the vectors $\boldsymbol{u}_{0}^{q e}, \boldsymbol{u}_{h}^{q e}$, and $\tilde{\boldsymbol{u}}_{h}^{q e}$, respectively, $2 q$ is the dimension of these vectors, and q is the total number of nodes in the region $S_{r}^{q e}$.

According to (19), we have $\varepsilon_{u}^{e}=\varepsilon_{u}^{e}\left(\boldsymbol{u}_{0}^{q e}, \boldsymbol{u}_{h}^{q e}\right)$, and $\delta_{u}^{e}=\delta_{u}^{e}\left(\tilde{\boldsymbol{u}}_{h}^{q e}, \boldsymbol{u}_{h}^{q e}\right)$. By virtue of (16), (18), and (19) and since convergence in the norm (8) is equivalent to uniform convergence (i.e., $\left|u_{01}^{q e}-u_{h 1}^{q e}\right| \rightarrow 0, \ldots,\left|\tilde{u}_{h 2 q}^{q e}-u_{h 2 q}^{q e}\right| \rightarrow 0$ as $h \rightarrow 0$) and the displacements in $S_{r}^{q e}$ are limited and nonzero (see Proposition 4), we obtain

$$
\begin{equation*}
\text { as } \quad h \rightarrow 0: \quad \varepsilon_{u}^{e}\left(\boldsymbol{u}_{0}^{q e}, \boldsymbol{u}_{h}^{q e}\right) \rightarrow 0, \quad \delta_{u}^{e}\left(\tilde{\boldsymbol{u}}_{h}^{q e}, \boldsymbol{u}_{h}^{q e}\right) \rightarrow 0 \tag{20}
\end{equation*}
$$

By virtue of (20), for any $\varepsilon_{0}^{r}>0$, there exists h or there exist vectors $\boldsymbol{u}_{h}^{q e}$ and $\tilde{\boldsymbol{u}}_{h}^{q e}\left(\boldsymbol{u}_{0}^{q e}=\right.$ const because $\boldsymbol{u}_{0}^{q e}$ is an exact solution, see Proposition 3) such that

$$
\begin{equation*}
\varepsilon_{u}^{e}\left(\boldsymbol{u}_{0}^{q e}, \boldsymbol{u}_{h}^{q e}\right)<\varepsilon_{0}^{r}, \quad \delta_{u}^{e}\left(\tilde{\boldsymbol{u}}_{h}^{q e}, \boldsymbol{u}_{h}^{q e}\right)<\varepsilon_{0}^{r} \tag{21}
\end{equation*}
$$

Let ε_{0}^{r} be a small quantity such that $\varepsilon_{u}^{e}\left(\boldsymbol{u}_{0}^{q e}, \boldsymbol{u}_{h}^{q e}\right)$ and $\delta_{u}^{e}\left(\boldsymbol{u}_{0}^{q e}, \boldsymbol{u}_{h}^{q e}\right)$ can be considered equal, i.e.,

$$
\begin{equation*}
\varepsilon_{u}^{e}=\delta_{u}^{e} \tag{22}
\end{equation*}
$$

Then, by virtue of (21) and (22), we infer that if $\delta_{u}^{e}<\varepsilon_{0}^{r}$, then the estimate for ε_{u}^{e} is given by

$$
\begin{equation*}
\varepsilon_{u}^{e}<\varepsilon_{0}^{r} . \tag{23}
\end{equation*}
$$

In the two-grid model of a composite, we distinguish a set of regions $S_{r}^{q e}$ (i.e., the region consisting of two-grid FEs S_{e}^{p}) in which the grid displacements (u or v) are maximal (in magnitude). Using formulas (12), (13), and (19), for this set of regions $S_{r}^{q e}$ we find the values of δ_{u}^{e}, where $e=1, \ldots, N_{1}\left(N_{1}<N\right) ; N_{1}$ is the number of chosen regions $S_{r}^{q e}$ (number of chosen FEs S_{e}^{p}). If $\delta_{u}^{e} \geqslant \varepsilon_{0}^{r}$ (where the constant ε_{0}^{r} is specified) for the chosen region $S_{r}^{q e}$, we diminish the step size h of the basic partitions of all two-grid FEs of the composite by virtue of (20) (the step size h is varied according to the rule of Proposition 2) and find a solution for the newly constructed two-grid model. As a result, we obtain a two-grid model such that the conditions $\delta_{u}^{e}<\varepsilon_{0}^{r}$ (i.e., $\varepsilon_{u}^{e}<\varepsilon_{0}^{r}$), where $e=1, \ldots, N_{1}$ hold for all chosen regions. Thus, in the chosen regions $S_{r}^{q e}$ in the two-grid model constructed, the mean local error ε_{u}^{e} is smaller than the specified estimate ε_{0}^{r}. In (23), it is expedient to use the values $\varepsilon_{0}^{r} \leqslant 0.01$ (i.e., $\varepsilon_{0}^{r} \leqslant 1 \%$). If the displacement functions vary only slightly on S_{e}, the estimate for ε_{0}^{r} can be extended to the entire region S_{e}.
2.3. Procedure for Constructing Two-Grid Models for Specified Mean Local Error in Stresses.

We consider the main principles of this procedure using as an example a two-grid model for a two-dimensional composite that consists of two-grid square FEs S_{e}^{p} and satisfies Propositions 1-4, where $e=1, \ldots, N(N$ is the total number of FEs S_{e}^{p}). Let s solution (i.e., vectors \boldsymbol{v}_{h}^{e}) be constructed for the two-grid model.

We introduce the vectors $\boldsymbol{u}_{0}^{j e}, \boldsymbol{u}_{h}^{j e}$, and $\tilde{\boldsymbol{u}}_{h}^{j e}$ that contain the nodal displacements of the j th square $\mathrm{FE} S_{j}^{h}$ of the region $S_{r}^{q e}$ and correspond to the nodal-displacement vectors $\boldsymbol{u}_{0}^{q e}, \boldsymbol{u}_{h}^{q e}$, and $\tilde{\boldsymbol{u}}_{h}^{q e}(j=1, \ldots, m$, where m is the total number of FEs S_{j}^{h} of the region $\left.S_{r}^{q e}\right)$. Let $\boldsymbol{t}_{0}^{j e}=\left\{\sigma_{x}^{0 j} \sigma_{y}^{0 j} \tau_{x y}^{0 j}\right\}^{\mathrm{t}}, \boldsymbol{t}_{h}^{j e}=\left\{\sigma_{x}^{h j} \sigma_{y}^{h j} \tau_{x y}^{h j}\right\}^{\mathrm{t}}$, and $\tilde{\boldsymbol{t}}_{h}^{j e}=\left\{\tilde{\sigma}_{x}^{h j} \tilde{\sigma}_{y}^{h j} \tilde{\tau}_{x y}^{h j}\right\}^{\mathrm{t}}$ be the vectors of stresses $\sigma_{x}^{0 j}, \ldots, \tilde{\tau}_{x y}^{h j}$ at the center of gravity of the FE S_{j}^{h} that correspond to the displacement vectors $\boldsymbol{u}_{0}^{j e}, \boldsymbol{u}_{h}^{j e}$, and $\tilde{\boldsymbol{u}}_{h}^{j e}$, respectively. Since the region S_{e} in the two-grid and basic models consists of square FE S_{j}^{h} with side h (see Propositions 1 and 2), the basic functions of the FE S_{j}^{h} of the region $S_{r}^{q e}$ are equal for the two-grid and basic models. Consequently, the vectors $\boldsymbol{t}_{0}^{j e}, \boldsymbol{t}_{h}^{j e}$, and $\tilde{\boldsymbol{t}}_{h}^{j e}$ can be written as $\boldsymbol{t}_{0}^{j e}=D_{j}^{e} \boldsymbol{u}_{0}^{j e}, \boldsymbol{t}_{h}^{j e}=D_{j}^{e} \boldsymbol{u}_{h}^{j e}$, and $\tilde{\boldsymbol{t}}_{h}^{j e}=D_{j}^{e} \tilde{\boldsymbol{u}}_{h}^{j e}$, where D_{j}^{e} is a rectangular matrix. For simplicity, we take into account that $\boldsymbol{u}_{0}^{j e} \subset \boldsymbol{u}_{0}^{q e}, \boldsymbol{u}_{h}^{j e} \subset \boldsymbol{u}_{h}^{q e}$, and $\tilde{\boldsymbol{u}}_{h}^{j e} \subset \tilde{\boldsymbol{u}}_{h}^{q e}$ and write the vectors $\boldsymbol{t}_{0}^{j e}, \boldsymbol{t}_{h}^{j e}$, and $\tilde{\boldsymbol{t}}_{h}^{j e}$ in the form

$$
\begin{equation*}
\boldsymbol{t}_{0}^{j e}=M_{j}^{e} \boldsymbol{u}_{0}^{q e}, \quad \boldsymbol{t}_{h}^{j e}=M_{j}^{e} \boldsymbol{u}_{h}^{q e}, \quad \tilde{\boldsymbol{t}} h=M_{j}^{e} \tilde{\boldsymbol{u}}_{h}^{q e} \tag{24}
\end{equation*}
$$

Here $M_{j}^{e}(j=1, \ldots$,$) is a rectangular matrix.$
The coefficients $M_{\alpha \beta}^{j e}$ of the matrix M_{j}^{e} depend on the elastic moduli of the square element S_{j}^{h} (with side h) and the partial derivatives of its basic functions limited within the FE S_{j}^{h} for any h. It follows that $\left|M_{\alpha \beta}^{j e}\right|<\infty$ as $h \rightarrow 0$. For the grid equivalent stresses in the region $S_{r}^{q e}$, we use the mean local (relative) error ε_{σ}^{e} and quantity δ_{σ}^{e} calculated by the formulas

$$
\begin{equation*}
\varepsilon_{\sigma}^{e}=\frac{1}{m} \sum_{j=1}^{m}\left|\frac{\sigma_{0 j}^{q e}-\sigma_{h j}^{q e}}{\sigma_{0 i}^{q e}}\right|, \quad \delta_{\sigma}^{e}=\frac{1}{m} \sum_{j=1}^{m}\left|\frac{\sigma_{h j}^{q e}-\tilde{\sigma}_{h j}^{q e}}{\sigma_{h j}^{q e}}\right|, \quad e=1, \ldots, N \tag{25}
\end{equation*}
$$

We determine the equivalent stresses $\sigma_{0 j}^{q e}, \sigma_{h j}^{q e}$, and $\tilde{\sigma}_{h j}^{q e}$ at the center of the j th $\mathrm{FE} S_{j}^{h}$ according to the fourth theory of strength, i.e., we use the relation

$$
\begin{equation*}
\sigma_{0 j}^{q e}=\sqrt{\left(\sigma_{x}^{0 j}\right)^{2}+\left(\sigma_{y}^{0 j}\right)^{2}-\sigma_{x}^{0 j} \sigma_{y}^{0 j}+3\left(\tau_{x y}^{0 j}\right)^{2}}, \quad \boldsymbol{t}_{0}^{j e}=\left\{\sigma_{x}^{0 j} \sigma_{y}^{0 j} \tau_{x y}^{0 j}\right\}^{\mathrm{t}} \tag{26}
\end{equation*}
$$

the values of $\sigma_{h j}^{q e}$ and $\tilde{\sigma}_{h j}^{q e}$ are calculated by formula (26) in which the stress-vector components $\boldsymbol{t}_{0}^{j e}$ are replaced by the corresponding components of the stress vectors $\boldsymbol{t}_{h}^{j e}$ or $\tilde{\boldsymbol{t}}_{h}^{j e}$.

According to (24) and (25), we obtain $\varepsilon_{\sigma}^{e}=\varepsilon_{\sigma}^{e}\left(\boldsymbol{u}_{0}^{q e}, \boldsymbol{u}_{h}^{q e}\right)$ and $\delta_{\sigma}^{e}=\delta_{\sigma}^{e}\left(\tilde{\boldsymbol{u}}_{h}^{q e}, \boldsymbol{u}_{h}^{q e}\right)$. By virtue of (12) and (13), we have $\boldsymbol{u}_{h}^{q e}=G_{h}^{q e} \boldsymbol{v}_{h}^{e}$ and $\tilde{\boldsymbol{u}}_{h}^{q e}=G_{0}^{q e} \boldsymbol{v}_{h}^{e}$ and, hence, $\varepsilon_{\sigma}^{e}=\varepsilon_{\sigma}^{e}\left(\boldsymbol{u}_{0}^{q e}, G_{h}^{q e} \boldsymbol{v}_{h}^{e}\right)$ and $\delta_{\sigma}^{e}=\delta_{\sigma}^{e}\left(G_{0}^{q e} \boldsymbol{v}_{h}^{e}, G_{h}^{q e} \boldsymbol{v}_{h}^{e}\right)$. Since $\boldsymbol{u}_{0}^{q e}=\operatorname{const}\left(\boldsymbol{u}_{0}^{j e} \subset \boldsymbol{u}_{0}^{q e} \subset \boldsymbol{u}_{0}^{e}\right.$ is an exact solution, see Proposition 3), we obtain

$$
\begin{equation*}
\varepsilon_{\sigma}^{e}=\varepsilon_{\sigma}^{e}\left(\boldsymbol{v}_{h}^{e}\right), \quad \delta_{\sigma}^{e}=\delta_{\sigma}^{e}\left(\boldsymbol{v}_{h}^{e}\right) \tag{27}
\end{equation*}
$$

Consequently, the functions $y_{e}=y_{e}\left(\boldsymbol{v}_{h}^{e}\right)$ and $x_{e}=x_{e}\left(\boldsymbol{v}_{h}^{e}\right)$, where

$$
\begin{equation*}
y_{e}=\varepsilon_{\sigma}^{e}\left(\boldsymbol{v}_{h}^{e}\right), \quad x_{e}=\delta_{\sigma}^{e}\left(\boldsymbol{v}_{h}^{e}\right) \tag{28}
\end{equation*}
$$

are related by an equation of the form $y_{e}=F_{e}\left(x_{e}\right)$. Using (16), (18), and (24) and taking into account that $\left|M_{\alpha \beta}^{j e}\right|<\infty$ and the norm (8) ensures uniform convergence $\boldsymbol{u}_{h}^{q e} \rightarrow \boldsymbol{u}_{0}^{q e}$ and $\tilde{\boldsymbol{u}}_{h}^{q e} \rightarrow \boldsymbol{u}_{h}^{q e}$ as $h \rightarrow 0$, one can easily show that

$$
\left\|\boldsymbol{t}_{h}^{j e}-\boldsymbol{t}_{0}^{j e}\right\|=\left\|M_{j}^{e}\left(\boldsymbol{u}_{h}^{q e}-\boldsymbol{u}_{0}^{q e}\right)\right\| \rightarrow 0, \quad\left\|\tilde{\boldsymbol{t}}_{h}^{j e}-\boldsymbol{t}_{h}^{j e}\right\|=\left\|M_{j}^{e}\left(\tilde{\boldsymbol{u}}_{h}^{q e}-\boldsymbol{u}_{0}^{q e}\right)\right\| \rightarrow 0
$$

as $h \rightarrow 0$. Using (26) and taking into account that the uniform convergence $\boldsymbol{t}_{h}^{j e} \rightarrow \boldsymbol{t}_{0}^{j e}$ and $\tilde{\boldsymbol{t}}_{h}^{j e} \rightarrow \boldsymbol{t}_{h}^{j e}$ (i.e., $\left|\sigma_{x}^{0 j}-\sigma_{x}^{h j}\right| \rightarrow 0,\left|\sigma_{y}^{0 j}-\sigma_{y}^{h j}\right| \rightarrow 0, \ldots$, and $\left|\tilde{\sigma}_{x}^{h j}-\sigma_{x}^{h j}\right| \rightarrow 0$ as $\left.h \rightarrow 0\right)$ and $\sigma_{0 j}^{q e}, \sigma_{h j}^{q e}, \tilde{\sigma}_{h j}^{q e}<\infty$ and $\sigma_{0 j}^{q e}, \sigma_{h j}^{q e}, \tilde{\sigma}_{h j}^{q e} \neq 0$ (see Proposition 4), one can readily show that $\left|\sigma_{h j}^{q e}-\sigma_{0 j}^{q e}\right| \rightarrow 0$ and $\left|\tilde{\sigma}_{h j}^{q e}-\sigma_{h j}^{q e}\right| \rightarrow 0$ as $h \rightarrow 0$. By virtue of (25), we obtain

$$
\begin{equation*}
h \rightarrow 0: \quad \varepsilon_{\sigma}^{e} \rightarrow 0, \quad \delta_{\sigma}^{e} \rightarrow 0 \tag{29}
\end{equation*}
$$

Using (8), (27), and (29), we infer that $\varepsilon_{\sigma}^{e}\left(\boldsymbol{v}_{h}^{e}\right) \rightarrow \varepsilon_{\sigma}^{e}\left(\boldsymbol{v}_{0}^{e}\right)=0$ and $\delta_{\sigma}^{e}\left(\boldsymbol{v}_{h}^{e}\right) \rightarrow \delta_{\sigma}^{e}\left(\boldsymbol{v}_{0}^{e}\right)=0$ as $h \rightarrow 0$, i.e., as $\boldsymbol{v}_{h}^{e} \rightarrow \boldsymbol{v}_{0}^{e}$. From this, by virtue of (28) we have $y_{e}\left(\boldsymbol{v}_{h}^{e}\right) \rightarrow y_{e}\left(\boldsymbol{v}_{0}^{e}\right)=0$ and $x_{e}\left(\boldsymbol{v}_{h}^{e}\right) \rightarrow x_{e}\left(\boldsymbol{v}_{0}^{e}\right)=0$ for $\boldsymbol{v}_{h}^{e} \rightarrow \boldsymbol{v}_{0}^{e}$. Thus, the functions $y_{e}\left(\boldsymbol{v}_{h}^{e}\right)$ and $x_{e}\left(\boldsymbol{v}_{h}^{e}\right)$ vanish at the same point $\left(\boldsymbol{v}_{0}^{e}\right)$ and, hence, $F_{e}(0)=0$ on the right since $x_{e} \geqslant 0$.

Similar reasoning to that in Sec. 2.2 shows that if $\delta_{\sigma}^{e}<\delta_{0}^{r}$, the error ε_{σ}^{e} has an estimate $\varepsilon_{\sigma}^{e}<\delta_{0}^{r}$, where δ_{0}^{r} is specified. Let δ_{0}^{r} be a small quantity such that $\delta_{\sigma}^{e}=\varepsilon_{\sigma}^{e}$. These conditions for the error ε_{σ}^{e} hold for small values of $\delta_{0}^{r}\left(\delta_{0}^{r} \leqslant 0.01\right)$ and, hence, they are difficult to satisfy since it is necessary to use very fine basic partitions of FE S_{e}^{p}. We consider another method for estimating the errors ε_{σ}^{e}.

Since $F_{e}(0)=0$, the function $F_{e}\left(x_{e}\right)$ in the ε-neighborhood of the zero point (on the right of zero), i.e., on the segment $[0, \varepsilon]$ can be written in approximate form $F_{e}\left(x_{e}\right)=b_{e} x_{e}+a_{1}^{e} x_{e}^{2}+\ldots+a_{n}^{e} x_{e}^{n+1}$, where $b_{e}, a_{i}^{e}=$ const, n is an integer, and $0 \leqslant x_{e} \leqslant \varepsilon$. Let $\varepsilon \ll 1$, i.e., $x_{e} \ll 1$. Setting $a_{1}^{e} x_{e}^{2}=0, \ldots, a_{n}^{e} x_{e}^{n+1}=0$, we obtain $F_{e}\left(x_{e}\right)=b_{e} x_{e}$, i.e., a linear function of the form $y_{e}=b_{e} x_{e}$, where $b_{e}>0$ since $x_{e} y_{e} \geqslant 0$. For this linear function and any value of $\delta_{r}\left(0<\delta_{r}<\varepsilon\right)$, we find that if $x_{e}<\delta_{r}$, then $y_{e}<\varepsilon_{r}^{e}$, where $\varepsilon_{r}^{e}=b_{e} \delta_{r}$. With allowance for (28), it follows that if $\delta_{\sigma}^{e}<\delta_{r}$, the following estimate for ε_{σ}^{e} holds:

$$
\begin{equation*}
\varepsilon_{\sigma}^{e} \leqslant \varepsilon_{r}, \quad e=1, \ldots, N_{2} \tag{30}
\end{equation*}
$$

Here $\varepsilon_{r}=\max \left(\varepsilon_{r}^{e}\right)\left(e=1, \ldots, N_{2}\right.$, where N_{2} is the total number of chosen regions $S_{r}^{q e}$, i.e., the number of chosen FEs S_{e}^{p} in which the stresses are analyzed, $\left.N_{2}<N\right), \varepsilon_{r}, \delta_{r}=$ const, and $\varepsilon_{r}, \delta_{r} \ll 1$ (ε_{r} is specified).

Since $\varepsilon_{r}^{e}=b_{e} \delta_{r}\left(b_{e}=\right.$ const) and $\varepsilon_{r}=\max \left(\varepsilon_{r}^{e}\right)$, then $\varepsilon_{r}=\max \left(b_{e} \delta_{r}\right)$, i.e., $\varepsilon_{r}=b \delta_{r}$, where $b=\max \left(b_{e}\right)$, $e=1, \ldots, N_{2}$. Thus, ε_{r} depends on δ_{r} and, what is more important, the quantity ε_{r} decreases with δ_{r}. Given the quantity ε_{r}, we determine δ_{r} using test calculations. In the two-grid model of a two-dimensional composite, we choose a set of regions $S_{r}^{q e}$ (i.e., subregion consisting of FEs S_{e}^{p}) in which the equivalent stresses attain the maximum value. For the regions $S_{r}^{q e}$, we determine the quantities $\delta_{\sigma}^{e}\left(e=1, \ldots, N_{2}\right)$ using formula (25). If $\delta_{\sigma}^{e} \geqslant \delta_{r}$ for the chosen region $S_{r}^{q e}$, we decrease the step size h of the basic partitions of all two-grid FEs by virtue of (29) and find the solution for the newly constructed two-grid model. As a result, we obtain a two-grid model for which the condition $\delta_{\sigma}^{e}<\delta_{r}$, i.e., $\varepsilon_{\sigma}^{e} \leqslant \varepsilon_{r}$ is satisfied in the chosen subregion. According to calculations, in (30) for the specified $\varepsilon_{r}=0.02\left(\varepsilon_{r}=2 \%\right)$, it is expedient to use values $\delta_{r} \leqslant 0.06$ (i.e., $\left.\delta_{r} \leqslant 6 \%\right)$. If the stresses vary only slightly in S_{e}, the estimate of ε_{r} can be extended to the entire region S_{e}. In practice, one should use the region $S_{r}^{e} \subset S_{r}^{q e}$ whose shape is convenient for calculations.

Remark 2. Calculations show that for specified ε_{0}^{r}, δ_{r}, and $\varepsilon_{r} \ll 1$, estimates (23) and (30) for the errors ε_{u}^{e} and ε_{σ}^{e}, respectively, are also valid for the regions $S_{r}^{q e}$ in the chosen FEs S_{e}^{p} whose structures differ. Hence, the quantities ε_{0}^{r} and δ_{r}, and ε_{r} do no depend on the structure of the FE S_{e}^{p}. Indeed, estimates (23) and (30) are based on conditions (8) and the assumption of Proposition 3, which hold for two-grid square FEs S_{e}^{p} of any regular composite structure.

Remark 3. Similar reasoning to that made above for composite models consisting of two-grid (four-grid) FEs V_{e}^{p} shaped like a cube (right-angle prism) using propositions similar to Propositions 1-4 leads to estimates of the form (23) and (30) for the mean local errors in displacements and equivalent stresses in the subregions located at the center of the FEs V_{e}^{p}.
3. Numerical Results. We consider plane stresses in a two-dimensional composite S of irregular structure with a filling ratio to 0.218 in a Cartesian coordinate system $x O y$ (Fig. 3a). The boundary conditions have the form $u=v=0$ for $y=0$ and $2 a \leqslant x \leqslant 5 a$ and $x=0$ and $3 a \leqslant y \leqslant 5 a$ (in Fig. 3a, the fixed boundary of S is dashed). The region occupied by the composite is divided into square subregions S_{e} with side $a=60 h$, where $e=1, \ldots, 43$. The composite structure consists of four typical composite square regions S^{k} with side a (Fig. 3b, $k=1,2,3,4$).

b

Fig. 3. Calculated diagram of the composite S (a) and composite structures of typical regions S^{k} (b).

Fig. 4. Diagram of the errors ε_{u}^{e} and values of δ_{u}^{e} for the displacements of the regions $S_{r}^{e} \subset S_{e}$.

The region S^{k} is reinforced by flat fibers of width $2 h$ inside the region and h on its boundary. In Fig. 3, the fibers are shown by lines and the value of the filling ratio S^{k} is given in parentheses. To construct a two-grid FE S_{e}^{p} in the region S_{e}, we use the grid of its basic partition, which consists (as the basic composite model) of first-order square FEs S^{h} with side $h[7]$ and four identical one-dimensional grids with step size $4 h$. For the nodes of the basic partition of the composite S, we introduce integer coordinates i and j (Fig. 3a). The forces $P_{x}=87.5$ and $P_{y}=96.3$ act at the nodes with coordinates $(481,181),(481,241)$, and $(181,361)$. Calculations were performed for $h=0.5$, Poisson's ratio for all composite components of 0.3 , a fiber Young's modulus of 10 , and a binder Young's modulus of 1 .

The maximum value of the displacements u_{h} and v_{h} for the two-grid model differs from the displacements u_{0} and v_{0} for the basic model by 0.4%. The maximum equivalent stress σ_{h} calculated at the center of $\mathrm{FE} S^{h}$ for the two-grid model using the fourth theory of strength [10] differs from the stresses σ_{0} of the basic model by 0.3%.

Figures 4 and 5 show diagrams of the errors ε_{u}^{e} and ε_{σ}^{e} and values of δ_{u}^{e} and δ_{σ}^{e} (in percent) calculated by formulas (19) and (25) for the $4 h \times 4 h$ region $S_{r}^{e}\left(S_{r}^{e} \subset S_{r}^{q e}\right)$; in the region S_{e}, the upper numbers refer to ε_{u}^{e} and ε_{σ}^{e} and the lower numbers to δ_{u}^{e} and δ_{σ}^{e}. For example, $\varepsilon_{u}^{e}=0.35 \%$ and $\delta_{u}^{e}=0.09 \%$ for S_{e} adjacent to the origin

Fig. 5. Chart of the errors ε_{σ}^{e} and values of δ_{σ}^{e} for the stresses of the regions $S_{r}^{e} \subset S_{e}$.
of the coordinates $x O y$ (see Fig. 4). In Figs. 3a, 4, and 5, the thick solid lines show FEs S_{e}^{p} in which σ_{h} or u_{h} and v_{h} attain the maximum values. An analysis shows that for all regions S_{r}^{e} of the chosen $\mathrm{FE} S_{e}^{p}$, estimate (23) for ε_{u}^{e} holds for $\varepsilon_{0}^{r}=0.01\left(\varepsilon_{0}^{r}=1 \%\right)$ and estimate (30) for ε_{σ}^{e} holds for $\delta_{r}=0.06$ and $\varepsilon_{r}=0.02\left(\delta_{r}=6 \%\right.$ and $\varepsilon_{r}=2 \%$). The estimates for the errors ε_{u}^{e} and ε_{σ}^{e} can be extended to the entire region S_{e}. We find that $\varepsilon_{u}^{e}<1 \%$ in the neighborhood of the maximum displacement of the composite and $\varepsilon_{\sigma}^{e}<2 \%$ near the points of application of the forces. For $\delta_{r} \leqslant 0.06$ and $\varepsilon_{r}=0.02$, estimate (30) is also valid for the subregions S_{r}^{e} of the FEs S_{e}^{p} (in Figs. 3a and 5 , these FEs are shown by thick dashed lines), where σ_{h} is approximately 10 times lower than the maximum stress. We note that for the given values of ε_{0}^{r}, δ_{r}, and ε_{r}, estimates (23) and (30) for the errors ε_{u}^{e} and ε_{σ}^{e}, respectively, are valid for S_{r}^{e} of the chosen FEs S_{e}^{p} of different composite structure (see Fig. 3a). Finite-element implementation for the two-grid composite model is 20 times faster and requires 150 times smaller computer memory than that for the basic model.

REFERENCES

1. T. Fudzii and M. Dzako, Fracture Mechanics of Composite Materials [Russian translation], Mir, Moscow (1982).
2. V. A. Postnov, Numerical Methods in Calculation of Ship Structures [in Russian], Sudostroenie, Leningrad (1977).
3. A. D. Matveev, "Elastic Multigrid Finite Elements. Analysis of Composites with Allowance for their Structure," Krasnoyarsk (1998). Deposited at VINITI 11.06.98, No. 3219-B98.
4. A. D. Matveev, "Some Approaches for Constructing Elastic Multigrid Finite Elements," Krasnoyarsk (2000). Deposited at VINITI 11.24.00, No. 2990-B00,
5. V. I. Samul', Fundamentals of the Theory of Elasticity and Plasticity [in Russian], Vysshaya Shkola, Moscow (1970).
6. D. H. Norrie and G. De Vries, An Introduction to Finite-Element Analysis, Academic Press, New York (1978).
7. G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Engiwood Cliffs, Prentice-Hall (1973).
8. P. M. Varvak, I. M. Burzun, A. S. Gorodetskii, et al., Finite Element Method [in Russian], Vishcha Shkola, Kiev (1981).
9. N. S. Bakhvalov, Numerical Methods, Vol. 1 [in Russian], Nauka, Moscow (1973).
10. G. S. Pisarenko, A. P. Yakovlev, and V. V. Matveev, Strength of Materials [in Russian], Naukova Dumka, Kiev (1975).

[^0]: Institute of Computational Modeling, Krasnoyarsk 660036. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 45, No. 3, pp. 161-171, May-June, 2004. Original article submitted October 8, 2002; revision submitted October 13, 2003.

